期刊专题

10.3969/j.issn.1002-1965.2013.09.027

国内外学术信息推荐方法研究进展

引用
学术信息个性化推荐是帮助科研用户处理海量无序信息的一种有效方法,当前国内外学者主要从基于内容、协同过滤和混合推荐方法角度对学术信息进行推荐。基于内容的方法分别从用户偏好建模、信息资源的主题挖掘和相似性计算三方面提高推荐的有效性;协同过滤的方法结合社会网络分析方法实现学术信息的推荐;而混合的方法则利用多个基础算法从不同角度提高推荐质量。本文旨在梳理当前国内外学术信息推荐方法的研究和应用现状,并在分析总结的基础上,展望今后的发展趋势。

学术信息资源、信息资源推送、个性化信息推荐、用户偏好、学科服务

G250(图书馆学、图书馆事业)

2013-10-17(万方平台首次上网日期,不代表论文的发表时间)

共6页

142-147

相关文献
评论
暂无封面信息
查看本期封面目录

情报杂志

1002-1965

61-1167/G3

2013,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn