期刊专题

10.3772/j.issn.1000-0135.2019.10.007

基于深度学习的查询扩展研究

引用
通过在查询扩展中引入深度学习框架,并结合局部和全局查询扩展模型,从而解决查询扩展中伪相关反馈引起的查询漂移问题.选择eBay于2017年发布的查询短语和商品名称作为实验数据,在伪相关反馈的基础上提出基于深度学习的查询扩展模型(deep learning based query expansion model,DLQEM),以实现更准确有效的查询扩展,并将其应用到信息检索任务中.实验结果表明,DLQEM的precision@10值在伪相关反馈(PRF)的基础上分别提高了3.5%和3.7%,验证了本文所提出假设(通过概念相关扩展词与反馈信息扩展词取交集能够有效地控制反馈相关扩展词造成的查询漂移)的有效性.深度学习能够解决监督学习在短文本集上难以获得好的分类效果的问题,将其与传统查询扩展模型进行结合,解决了传统查询扩展中需要用户参与和检索速度迟缓两大弊端,控制了查询漂移.

信息检索、查询扩展、深度学习、伪相关反馈

38

国家自然科学基金面上项目"大数据环境下基于领域知识获取与对齐的观点检索研究"71373286;中南财经政法大学中央高校基本科研业务费专项资金资助项目"大数据视角下的中美贸易战观点挖掘研究"2722019JX007

2019-11-07(万方平台首次上网日期,不代表论文的发表时间)

共12页

1066-1077

相关文献
评论
暂无封面信息
查看本期封面目录

情报学报

1000-0135

11-2257/G3

38

2019,38(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn