10.3772/j.issn.1000-0135.2014.03.010
电子商务中基于非均衡数据分类和词性分析的意见挖掘研究
随着电子商务的不断普及,网络商品评论作为消费者了解网上销售商品质量的一个重要途径,已受到越来越多的重视,并且已提出很多意见挖掘方法来帮助消费者利用这些数据.但目前研究对网络商品评论的非均衡分布特性还较少关注,为此,本文提出基于非均衡数据分类和词性分析的意见挖掘方法.该方法综合基于情感知识和机器学习两种意见挖掘方法,首先,分析电子商务评论的语言特征,对电子商务评论中词语的词性进行分析,提出“留词性”和“去词性”两种分析方法;其次,根据电子商务意见挖掘数据不均衡分布的特征,提出基于非均衡数据分类的意见挖掘方法.最后,以携程网、京东商城和当当网三个不同电子商务网站的用户评论为语料库,对本文提出的方法进行检验,实验结果验证了本文提出的基于非均衡数据分类和词性分析的意见挖掘方法的有效性,并且采用去词性分析方法时,Random Subspace在所有测试集上均取得了最好的分类结果.
意见挖掘、非均衡数据分类、词性分析、电子商务
33
H31;I20
国家自然科学基金71101042,71271202;高等学校博士学科点专项科研基金20110111120014;中国博士后科学基金2011M501041,2013T60611;国家重点基础研究发展计划973计划2013CB329603
2014-07-04(万方平台首次上网日期,不代表论文的发表时间)
共13页
313-325