期刊专题

10.3772/j.issn.1000-0135.2012.09.012

基于改进近邻传播算法的Web用户聚类

引用
随着Internet和电子商务的迅猛发展,聚类技术在Web用户划分方面的作用越来越明显.Web用户聚类的难度在于有成千上万的用户需要聚类,而且每个用户的偏好向量是高维稀疏的.对于处理大规模的数据集,近邻传播算法是一种快速、有效的聚类方法.但面对高维稀疏的数据,近邻传播算法往往不能得到很好的聚类结果,而且该方法不能产生指定类数的聚类.本文提出一种改进的近邻传播算法,使用该方法对Web用户进行聚类.根据灰关系等级和Jaccard系数定义用户相似度矩阵,对算法产生的初始聚类进行重新分配,获得指定类数的聚类.实验结果表明新算法是有效的,与原始近邻传播算法相比,新算法在个性化推荐的应用中具有更好的性能.

Web用户聚类、稀疏性、近邻传播算法、相似度矩阵

31

TP3;P49

国家自然科学基金重点项目70631003

2012-10-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

993-997

相关文献
评论
暂无封面信息
查看本期封面目录

情报学报

1000-0135

11-2257/G3

31

2012,31(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn