10.3772/j.issn.1000-0135.2011.03.008
一种有效的多文档文摘语义空间降维方法
基于多文档集合特征的多文档文摘生成方法在选取最优词时利用人工进行特征降维,方法过于机械,同时在回溯词鄄文档矩阵进行文本相似度计算时,存在对稀疏矩阵无法计算的问题.本文对话题追踪结果进行多文档文摘研究,提出一种有效的多文档文摘语义空间降维方法.新方法在整个话题范围内构造语义空间词鄄文档矩阵,采用奇异值分解对原始词鄄文档矩阵进行特征降维,同时构造能充分包含原始文档词汇信息且维数低的转换矩阵F,利用它来回溯词鄄文档矩阵,完成低维空间下的词相似度计算,进而完成文本单元相似度计算以及文本单元聚类,最终生成多文档自动文摘.实验结果表明,该方法能够对语义空间词鄄文档矩阵进行完美降维,同时避免稀疏矩阵无法计算的问题,对最终生成的多文档文摘有着很好的效果.
语义空间、多文档文摘、特征降维、奇异值分解、聚类
28
TP3;G35
国家高技术研究发展计划863资助,项目2007AA01Z439
2011-03-28(万方平台首次上网日期,不代表论文的发表时间)
共6页
286-291