期刊专题

10.3772/j.issn.1000-0135.2010.04.022

一种基于类别的组合型文本特征选择

引用
文本特征降维对文本分类的精确性有着非常重要的影响.本文针对传统的TF-IDF没有考虑特征项的类间分布状况以及对类属低频词的抑制现象、MI在训练样本类别分布偏斜条件下的不足问题分别进行了改进,进而提出了一种基于类别的组合型文本特征选择算法.随后的文本分类试验表明,本文提出的加权模型相比较于传统的TF-IDF以及MI方法可以有效提高文本分类的精度.

文本分类、特征选择、互信息方法、特征加权

29

TP3;TP1

国家自然科学基金资助项目70571087

2010-09-07(万方平台首次上网日期,不代表论文的发表时间)

共5页

744-748

暂无封面信息
查看本期封面目录

情报学报

1000-0135

11-2257/G3

29

2010,29(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn