期刊专题

10.3772/j.issn.1000-0135.2010.04.017

基于本体和Rough Set理论的知识推理模型

引用
随着计算机的普及与快速发展,如何通过在批量数据中提取有效规则实现机器智能分类与推理,提高知识推理的有效性与准确率,成为当前知识服务领域的难题之一.文章基于本体(Ontology)的知识组织方式和粗糙集(Rough Set)理论的知识获取技术,针对批量数据的规则提取实现知识推理,提出知识推理模型ORSKM.ORSKM模型利用九元组构建领域本体,实现实例数据的语义化描述;从领域本体的属性中提取粗糙集的决策表,由决策表对领域本体关系进行领域知识知识库归约,获取领域知识相关的属性规则;通过粗糙集知识推理算法实现知识获取,最后通过实验对该知识推理模型进行验证.

领域本体、粗糙集、知识推理、知识描述模型

29

TP3;V27

国家高技术研究发展计划863计划2006AA10Z239;广东省"直通车工程"项目2007B040801039

2010-09-07(万方平台首次上网日期,不代表论文的发表时间)

共9页

709-717

相关文献
评论
暂无封面信息
查看本期封面目录

情报学报

1000-0135

11-2257/G3

29

2010,29(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn