期刊专题

10.3969/j.issn.1000-0135.2006.04.012

一种基于粗糙-神经网络的文本自动分类方法

引用
结合粗糙集的属性约简和神经网络的分类机理,提出了一种混合算法.首先应用粗糙集理论的属性约简作为预处理器,把冗余的属性从决策表中删去,然后运用神经网络进行分类.这样可以大大降低向量维数,克服粗糙集对于决策表噪声比较敏感的缺点.试验结果表明,与朴素贝叶斯、SVM、KNN传统分类方法相比,该方法在保持分类精度的基础上,分类速度有明显的提高,体现出较好的稳定性和容错性,尤其适用于特征向量多且难以分类的文本.

文本分类、粗糙集、神经网络、属性约简、VSM

25

G35(情报学、情报工作)

2006-09-18(万方平台首次上网日期,不代表论文的发表时间)

共6页

475-480

暂无封面信息
查看本期封面目录

情报学报

1000-0135

11-2257/G3

25

2006,25(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn