10.16353/j.cnki.1000-7490.2021.01.025
基于BiLSTM-CRF的政府微博舆论观点抽取与焦点呈现
[目的/意义]准确把握公众微博评论中所反映的公众观点并总结舆论焦点,有助于及时获取和引导社会舆情态势,对政府公信力、快速响应能力及执行力提升具有支撑作用.[方法/过程]文章针对当前政府微博评论社会功能发挥的现实要求和其文本特征挖掘的技术需求,从基于深度学习的文本智能语义理解和挖掘出发,提出了适用的细粒度四元组标注策略,构建了政府微博评论观点抽取与焦点呈现的深度学习模型POF-BiLSTM-CRF,即通过细粒度标注策略确定、Word2vec训练词向量、BiLSTM评论特征学习进行标签及其概率输出、CRF学习上下文实现微博评论标注优化,以及观点聚类和主题词提取后最终呈现舆论焦点.[结果/结论]针对"中国警方在线"微博评论的实验表明,文章所提研究框架和模型能够有效进行舆论观点的智能化提取,为快速把握公众观点及为政府决策提供了参考.
政府微博评论、舆论观点抽取、深度学习模型、BiLSTM-CRF模型、POF-BiLSTM-CRF模型
44
本文为国家自然科学基金面上项目"基于深度学习的政务新媒体互动内容摘要自动生成与情感分析模型研究"的成果,项目编号:71874125
2021-03-05(万方平台首次上网日期,不代表论文的发表时间)
共7页
174-179,137