期刊专题

10.16353/j.cnki.1000-7490.2019.12.023

面向词权重的主题识别应用研究

引用
[目的/意义]在文本主题求解时,LDA模型更倾向于高频率的词项,造成主题的语义特征和内容区分度不高.[方法/过程]从文本的词权重入手,综合考虑词项在文本集合中的全局统计特征和局部语义特征,衡量词语在文本中的重要性,并将词语的特征值作为LDA主题模型的输入,改变LDA模型生成词的概率.[结果/结论]实验表明,结合词权重的LDA模型,具有更好的模型拟合度,同时能够较好的识别语料库中主要话题,提高了主题词分布的广度和主题的语义区分度.通过新闻文本数据验证了该方法的可行性与有效性.[局限]对词语的局部语义特征描述需要大数据量的计算.

主题模型、LDA模型、FTIDF、N-gram、权重、主题识别

42

TP1;TQ6

上海哲学社会科学一般项目“基于主题模型的学科交叉知识发现研究”的成果之一,项目2016BTQ002

2020-01-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

144-149

暂无封面信息
查看本期封面目录

情报理论与实践

1000-7490

11-1762/G3

42

2019,42(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn