10.3969/j.issn.1674-8530.13.0225
基于支持向量机的地面驱动螺杆泵井工况诊断技术
地面驱动螺杆泵井举升工艺的故障频发,限制了其进一步发展.为了提高地面驱动螺杆泵井的经济效益和管理水平,提出了基于支持向量机的地面驱动螺杆泵井工况诊断技术.选取产量、动液面等8个表征油井工作状态的变量作为输入参数,常见10种螺杆泵井工况作为输出参数,以东胜公司金家油田已存故障地面驱动螺杆泵井为基础,建立诊断样本集,采用投票法建立C210=45个子分类器,基于网格寻优、遗传算法和粒子群寻优算法对C,g进行优化计算,借助Matlab调用Libsvm工具箱对支持向量机模型进行训练,利用东胜公司金家油田15口地面驱动螺杆泵井进行诊断验证,并与人工神经网络方法进行了对比.结果表明:采用支持向量机诊断方法诊断正确的有14口油井,诊断正确率为93.33%,与人工神经网络方法(88.90%)相比具有更高的精度,在小样本诊断问题中具有更强的优势,是一种切实可行的智能诊断方法.
螺杆泵、工况诊断、支持向量机、Libsvm、人工神经网络
32
S277.9;TE355.5(农田水利)
国家科技重大专项课题资助项目2011ZX05011-003
2014-04-01(万方平台首次上网日期,不代表论文的发表时间)
125-129