期刊专题

10.6041/j.issn.1000-1298.2023.02.021

基于改进YOLO v3的玉米叶片气孔自动识别与测量方法

引用
气孔是植物叶片与外界环境交换气体和水分的重要结构.针对现有气孔性状分析主要采用人工测量,过程繁琐、效率低下、容易出现人为误差的问题,本文采用YOLO(You only look once)深度学习模型完成了玉米叶片气孔的自动识别与自动测量工作.结合玉米叶片气孔数据集的特点,对YOLO深度学习模型进行了改进,有效地提高了气孔识别和测量的精确率.对YOLO深度学习模型中的预测端进行了优化,降低了误检率;同时,结合气孔特征对16倍、32倍下采样层进行简化,提高了识别效率.实验结果表明,改进后的YOLO深度学习模型在玉米叶片气孔数据集上识别精确率达到95%,参数测量的平均精确率达到90%以上.本文方法能够自动完成玉米叶片气孔的识别、计数与测量,解决了传统气孔分析方法的低效率问题,为农业科学家、植物学家开展植物气孔分析研究提供了技术支撑.

玉米叶片、气孔、深度学习、自动识别

54

TP391.41(计算技术、计算机技术)

河南省自然科学基金;河南省自然科学基金;河南省科技攻关计划项目

2023-03-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

216-222

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

54

2023,54(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn