期刊专题

10.6041/j.issn.1000-1298.2022.09.017

基于卷积神经网络的高分遥感影像耕地提取研究

引用
高效精准地提取遥感影像中的耕地对农业资源监测以及可持续发展具有重要意义,针对目前多数传统全卷积神经网络(FCN)模型在提取耕地时存在重精度而轻效率的缺陷,本文建立基于FCN的轻量级耕地图斑提取模型(LWIBNet模型),并结合数学形态学算法进行后处理,开展耕地图斑信息的自动化提取研究.该LWIBNet模型汲取了轻量级卷积神经网络和U-Net模型的优点,以Inv-Bottleneck模块(由深度可分离卷积、压缩-激励块和反残差块组成)为核心,采用高效的编码-解码结构为骨架,将LWIBNet模型分别与传统模型的耕地提取效果、经典FCN模型的轻量性和精确度进行对比,结果表明,LWIBNet模型比表现最优的传统模型Kappa系数提高12.0%,比U-Net模型的参数量、计算量、训练耗时、分割耗时分别降低96.5%、87.1%、78.2%和75%,且LWIBNet的分割精度与经典FCN模型相似.

耕地、提取、高分遥感影像、卷积神经网络、LWIBNet

53

TP391.4(计算技术、计算机技术)

国家科技奖后备项目;江西省水利科技项目;江西省水利科技项目;江西省水利科技项目;江西省水利科技项目

2022-10-20(万方平台首次上网日期,不代表论文的发表时间)

共10页

168-177

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

53

2022,53(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn