期刊专题

10.6041/j.issn.1000-1298.2021.11.041

基于原型网络的小样本禽蛋图像特征检测方法

引用
机器视觉因具有检测速度快、稳定性高及成本低等优点,已发展成为禽蛋无损检测领域主流检测手段.使用该技术对禽蛋进行无损检测时,需要依赖大量禽蛋图像作为数据支撑才能取得较好的检测效果.由于养殖安全等限制,禽蛋图像数据的采集成本较高,针对该问题,提出了一种适应于小样本禽蛋图像检测的原型网络(Prototypical network).该网络利用引入注意力机制的逆残差结构搭建的卷积神经网络将不同类别的禽蛋图像映射至嵌入空间,并利用欧氏距离度量测试禽蛋图像在嵌入空间的类别,从而完成禽蛋图像的分类.本文利用该网络分别验证了小样本条件下受精蛋与无精蛋、双黄蛋与单黄蛋及裂纹蛋与正常蛋的分类检测效果,其检测精度分别为95%、98%、88%.试验结果表明本文方法能够有效地解决禽蛋图像检测中样本不足的问题,为禽蛋图像无损检测研究提供了新的思路.

小样本;禽蛋;无损检测;原型网络;带注意力机制逆残差

52

TP391(计算技术、计算机技术)

国家自然科学基金面上项目;湖北省重点研发计划项目

2021-12-20(万方平台首次上网日期,不代表论文的发表时间)

共8页

376-383

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

52

2021,52(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn