10.6041/j.issn.1000-1298.2021.11.039
基于残差网络和图像处理的干制哈密大枣外部品质检测
针对目前红枣分级装置检测指标单一,难以实现外部品质综合判别的问题,设计了一款基于残差网络结合图像处理的干制哈密大枣外部品质检测系统.首先,通过深度学习图像分类实现裂纹、鸟啄和霉变缺陷检测,为克服当前残差网络计算量大、复杂度高以及信息丢失的问题,提出了一种改进深度残差网络图像分类方法;其次,根据尺寸与纹理数量的等级差异性,提出了一种阈值检测方法,通过提取干制哈密大枣图像面积、周长、拟合圆半径及纹理数量特征,实现尺寸及褶皱检测.试验结果表明缺陷识别模型和尺寸、褶皱检测模型测试准确率分别达到97.25%、93.75%和93.75%.综合缺陷、尺寸和褶皱3种外部品质指标,通过在线采集图像验证系统测试,外部品质综合检测准确率为93.13%,可初步满足干制哈密大枣品质在线检测装备的生产需求.
干制哈密大枣;外部品质检测;残差网络;图像处理;阈值检测
52
TP391(计算技术、计算机技术)
国家自然科学基金项目61763043
2021-12-20(万方平台首次上网日期,不代表论文的发表时间)
共9页
358-366