10.6041/j.issn.1000-1298.2021.10.008
基于K-means聚类和分区寻优的秸秆覆盖率计算方法
针对农田秸秆形态多样、细碎秸秆难以准确识别的问题,基于机器视觉技术,提出了一种基于K-means聚类和分区寻优结合的秸秆覆盖率计算方法.该方法首先利用K-means聚类算法对玉米秸秆图像进行分割,使秸秆从背景图像中分离;然后将秸秆图像分隔为16区,利用统计学方法分别计算各区秸秆中位数和众数灰度平均值,16区平均后分别获得秸秆中心灰度和土壤背景中心灰度,将其作为新的分类中心,重新采用K-means聚类方法对玉米秸秆图像进行分割,当秸秆中心灰度不再发生变化时停止迭代,计算秸秆像素点数量;最后计算获得玉米秸秆覆盖率.2021年4月,该方法在吉林省长春市玉米地100个采样点进行了实际验证,与人工拉绳法和人工图像标记法的相关系数分别为0.7161和0.9068,误判率7%,平均误差比Otsu阈值化方法和经典K-means聚类方法分别降低了45.6%和29.2%.试验结果表明,所提方法能够实现对不同天气、不同种植模式、不同地块条件下的秸秆覆盖率准确计算,该研究结果可为秸秆覆盖率在线计算提供一种新方法.
玉米秸秆覆盖率;机器视觉;K-means聚类;分区寻优;保护性耕作
52
O657.3;S126(分析化学)
财政部和农业农村部;国家现代农业产业技术体系项目;北京市农林科学院创新能力项目
2021-11-16(万方平台首次上网日期,不代表论文的发表时间)
共6页
84-89