期刊专题

10.6041/j.issn.1000-1298.2021.07.042

基于DXNet模型的富士苹果外部品质分级方法研究

引用
针对传统计算机视觉技术在苹果外部品质分级中准确率较低、鲁棒性较差等问题,提出了基于深度学习的苹果外观分级方法(多卷积神经网络融合DXNet模型).首先,在延安市超市、果园等场所实地拍摄不同外观等级的苹果图像15 000幅,并进行人工标记,建立了外部品质信息覆盖度广、样本量大的苹果图像数据库;然后,在对比分析经典卷积网络模型的基础上,采用模型融合的方式对经典模型进行优化改进,抽取经典模型卷积部分进行融合,作为特征提取器,共享全连接层用作分类器,并采用批归一化和正则化技术防止模型过拟合.试验评估采用15 000幅图像进行训练、4 500幅图像进行测试,结果表明,DXNet模型的分级准确率高于经典模型,分级准确率达到97.84%,验证了本文方法用于苹果外部品质分级的有效性.

苹果;外部品质分级;深度学习;计算机视觉;模型融合

52

TP391.4(计算技术、计算机技术)

国家自然科学基金项目;陕西省自然科学基础研究计划项目;延安大学博士科研启动项目;延安市科技专项项目;谷歌支持教育部产学合作协同育人项目;延安大学大学生创新创业训练计划项目

2021-08-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

379-385

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

52

2021,52(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn