期刊专题

10.6041/j.issn.1000-1298.2021.07.040

基于数据平衡和深度学习的开心果品质视觉检测方法

引用
为探究数据集中分类数量的平衡性对开心果品质检测的影响,将开心果图像与深度学习网络相结合,提出一种数据自动平衡的检测方法.根据行业标准将开心果数据集分为开口、闭口和缺陷3类,在此基础上再分为未经数据平衡和经过数据平衡2个数据集,分别使用AlexNet、GoogLeNet、ResNet50、SqueezeNet、ShuffleNet和Xception 6种网络对2类数据集进行分类测试.结果表明,经过数据平衡的数据集网络准确率均得到了提高,6种网络平均测试准确率由96.75%提高到99.26%,SqueezeNet网络的测试集准确率提升最明显,由93.76%提高到99.02%,ResNet50网络的测试准确率最高,为99.96%.本文方法可用于开心果品质视觉检测.

开心果;深度学习;数据平衡;视觉检测

52

TP391.4(计算技术、计算机技术)

国家自然科学基金项目;山东省重点研发计划项目;山东省高等学校青创计划团队项目;青岛市科技发展计划项目

2021-08-17(万方平台首次上网日期,不代表论文的发表时间)

共6页

367-372

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

52

2021,52(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn