期刊专题

10.6041/j.issn.1000-1298.2021.03.017

基于无人机多时相植被指数的冬小麦产量估测

引用
通过无人机搭载多光谱相机,对不同水分亏缺条件下冬小麦多个生育期进行遥感监测,采用不同种类多光谱植被指数表征冬小麦的生长特征,分析了植被指数与冬小麦产量的相关关系,并利用多时相植被指数构建产量估测数据集,采用偏最小二乘回归、支持向量机回归和随机森林回归3种机器学习算法进行冬小麦产量估测.结果表明,随着冬小麦的生长,多个植被指数与产量的相关性不断增强,灌浆末期相关系数达到0.7,植被指数与产量的线性回归决定系数也达到最大.多时相植被指数反映了冬小麦生长的变化特征,进一步提高了冬小麦产量估测精度,采用开花期和灌浆初期的多时相植被指数进行估产比采用单个生育期的植被指数估测产量的精度高,采用偏最小二乘回归模型的估测精度R2提高约0.021,支持向量机回归模型R2提高约0.015,随机森林回归模型R2提高约0.051.采用灌浆末期的多时相植被指数,3种模型均有较高的估测精度,偏最小二乘回归模型估测精度最高时的R2、RMSE分别为0.459、1 822.746 kg/hm2,支持向量机回归模型估测精度最高时的R2、RMSE分别为0.540、1 676.520 kg/hm2,随机森林回归模型估测精度最高时的R2、RMSE分别为0.560、1 633.896 kg/hm2,本文数据集训练的随机森林回归模型估测精度最高,且稳定性更好.

冬小麦、产量估测、多光谱植被指数、无人机

52

S127(农业物理学)

中央级公益性科研院所基本科研业务费专项;中国农业科学院重大产出培育项目;河南省科技研发专项

2021-05-17(万方平台首次上网日期,不代表论文的发表时间)

共8页

160-167

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

52

2021,52(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn