期刊专题

10.6041/j.issn.1000-1298.2021.01.003

基于SOM-K-means算法的番茄果实识别与定位方法

引用
为解决多个番茄重叠黏连时难以识别与定位的问题,提出一种基于RGB-D图像和K-means优化的自组织映射(Self-organizing map,SOM)神经网络相结合的番茄果实识别与定位方法.首先,利用RGB-D相机拍摄番茄图像,对图像进行预处理,获取果实的轮廓信息;其次,提取果实轮廓点的平面和深度信息,筛选后进行处理;再次,将处理后的数据输入到采用K-means算法优化的SOM神经网络中,得到点云聚类结果;最后,根据聚类点,通过坐标转换得到世界坐标信息,拟合得到各个番茄的位置和轮廓形状.以果实识别的正确率和定位结果的均方根误差(RMSE)为指标对该算法进行验证和分析,采集80幅图像共366个番茄样本,正确识别率为87.2%,定位结果均方根误差(RMSE)为1.66 mm.与在二维图像上利用Hough变换进行果实识别的试验进行对比分析,进一步验证了本文方法具有较高的准确性和较强的鲁棒性.

番茄果实、深度点云、图像分割、神经网络、识别与定位、SOM-K-means算法

52

S641.2;TP391.41

国家自然科学基金项目;北京市创新训练项目

2021-03-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

23-29

暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

52

2021,52(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn