10.6041/j.issn.1000-1298.2021.01.003
基于SOM-K-means算法的番茄果实识别与定位方法
为解决多个番茄重叠黏连时难以识别与定位的问题,提出一种基于RGB-D图像和K-means优化的自组织映射(Self-organizing map,SOM)神经网络相结合的番茄果实识别与定位方法.首先,利用RGB-D相机拍摄番茄图像,对图像进行预处理,获取果实的轮廓信息;其次,提取果实轮廓点的平面和深度信息,筛选后进行处理;再次,将处理后的数据输入到采用K-means算法优化的SOM神经网络中,得到点云聚类结果;最后,根据聚类点,通过坐标转换得到世界坐标信息,拟合得到各个番茄的位置和轮廓形状.以果实识别的正确率和定位结果的均方根误差(RMSE)为指标对该算法进行验证和分析,采集80幅图像共366个番茄样本,正确识别率为87.2%,定位结果均方根误差(RMSE)为1.66 mm.与在二维图像上利用Hough变换进行果实识别的试验进行对比分析,进一步验证了本文方法具有较高的准确性和较强的鲁棒性.
番茄果实、深度点云、图像分割、神经网络、识别与定位、SOM-K-means算法
52
S641.2;TP391.41
国家自然科学基金项目;北京市创新训练项目
2021-03-08(万方平台首次上网日期,不代表论文的发表时间)
共7页
23-29