期刊专题

10.6041/j.issn.1000-1298.2020.07.002

基于卷积神经网络的油茶籽完整性识别方法

引用
针对现有油茶籽色选机无法识别碎籽的问题,提出一种基于卷积神经网络的油茶籽完整性识别算法.以油茶籽完整性识别为目标,构建油茶籽图像库;基于油茶籽完整性识别任务要求,通过对AlexNet网络进行优化得到适合油茶籽完整性识别的卷积神经网络模型,该网络具有4层卷积层、2层归一化层、3层池化层和1层全连接层.为了提高网络分类准确率和实时性,从网络结构简化和超参数优化两方面对卷积神经网络进行优化,最终网络结构(CO-Net)的分类准确率、训练收敛速度和泛化性能均得到了提高.实验结果表明,优化后的网络对油茶籽完整性识别准确率达98.05%,训练时间为0.58h,模型规模为1.65 MB,单幅油茶籽图像检测平均耗时13.91 ms,可以满足油茶籽在线实时分选的要求.

油茶籽、完整性、识别、卷积神经网络

51

TS222+.1(食品工业)

国家重点研发计划项目;赣南油茶产业开发协同创新中心开放基金项目

2020-08-13(万方平台首次上网日期,不代表论文的发表时间)

共9页

13-21

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

51

2020,51(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn