期刊专题

10.6041/j.issn.1000-1298.2020.05.003

基于IFSSD卷积神经网络的柚子采摘目标检测模型

引用
为了解决柚子采摘时传统水果检测模型对于小目标柚子漏检和将叶子误检为膨大期柚子的问题,设计了一种改进的特征融合单镜头检测器(InceptionV3-feature fusion single shot-multibox detector,IFSSD).该检测器以特征融合单发多盒探测器(Feature fusion single shot-multibox detector,FSSD)为基础检测器,以改进的InceptionV3网络作为骨干网络代替超深度卷积神经网络(Very deep convolutional networks 16,VGG16),从而提高了计算效率,同时使用Focal Loss损失函数代替Multibox Loss损失函数,进而改善了由于正负样本不平衡导致的检测器误检情况.对测试数据集进行检测,结果表明,该模型的检测准确率为93.7%(IoU大于0.5),在单个NVIDIA RTX 2060 GPU上每幅图像检测时间为29 s.本文模型可以实现树上柚子的自动检测.

柚子、采摘、实时检测、深度学习、特征融合、改进的特征融合单镜头检测器

51

TP391.41(计算技术、计算机技术)

国家重点研发计划项目;广东省重点领域研发计划项目;广东省科技计划项目

2020-06-22(万方平台首次上网日期,不代表论文的发表时间)

共9页

28-35,97

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

51

2020,51(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn