10.6041/j.issn.1000-1298.2018.10.005
移动机器人RGB-D视觉SLAM算法
针对移动机器人视觉同步定位以及地图构建(Simultaneous localization and mapping,SLAM)研究中存在精确度较低、实时性较差等问题,提出了一种用于移动机器人的RGB-D视觉SLAM算法.首先利用定向二进制简单描述符(Oriented fast and rotated brief,ORB)算法提取RGB图像的特征点,通过基于快速近似最邻近(Fast library for approximate nearest neighbors,FLANN)的双向邻近(K-nearest neighbor,KNN)特征匹配方法得到匹配点对集合,利用改进后的随机抽样一致性(Re-estimate random sample consensus,RE-RANSAC)算法剔除误匹配点,估计得到相邻图像间的6D运动变换模型,然后利用广义迭代最近点(Generalized iterative closest point,GICP)算法得到优化后的运动变换模型,进而求解得到相机位姿.为提高定位精度,引入随机闭环检测环节,减少了机器人定位过程中的累积误差,并采用全局图优化(General graph optimization,G2O)方法对相机位姿图进行优化,得到全局最优相机位姿和相机运动轨迹;最终通过点云拼接生成全局彩色稠密点云地图.针对所测试的FR1数据集,本文算法的最小定位误差为0.011 m,平均定位误差为0.024 5 m,每帧数据平均处理时间为0.032 s,满足移动机器人快速定位建图的需求.
移动机器人、RGB-D、视觉同步定位与地图构建、广义迭代最近点、图优化
49
TP242.6(自动化技术及设备)
中央高校基本科研业务费专项资金项目2016ZCQ08;国家级大学生创新创业训练项目20170022057
2018-11-30(万方平台首次上网日期,不代表论文的发表时间)
共8页
38-45