10.6041/j.issn.1000-1298.2018.04.029
基于点云的谷粒高通量表型信息自动提取技术
在进行水稻的数字化考种、表型与基因关联分析和数字农业仿真模拟时,需要大量的谷粒表型信息作数据支撑.本文提出了一种基于三维点云的谷粒高通量表型信息自动提取方法,能同时自动获取谷粒的三维模型和40个表型参数,实现谷粒形状的定量和定性描述.首先,通过对谷粒点云数据进行聚类分析,完成谷粒点云的分类;其次,实现谷粒的三维重建,对谷粒离散点云进行柱面构网,获取谷粒点云的三维模型数据;最后,根据不同表型参数的特点,实现了谷粒的三维表面积和体积、长、宽、高、3个主成分剖面的周长和面积等11个基本参数与长宽比、长高比和体积比等11个衍生参数以及18个形状因子的自动提取.利用Handyscan 700型手持式激光扫描仪获取的谷粒高精度点云数据进行实验,成功实现了谷粒表型参数的自动提取,测量结果可达毫米级.基于主成分方法分析了各表型参数的权重.以游标卡尺测量值和Geomagic Studio测量值作为真值,长、宽、高的平均相对误差为1.14%、1.15%和1.62%,体积和表面积的相对误差为零,3个主成分剖面面积的平均相对误差为1.82%、2.12%和2.43%.本文方法与人工测量方法及软件测量方法相比,精度相当,且具有批量、自动、人工干预少(仅数据采集阶段需要人工操作)以及效率高的特点.
谷粒、表型信息、点云、自动化、批处理
49
TP391.1;S818(计算技术、计算机技术)
国家自然科学基金项目41671452、41701532;中央高校基本科研业务费专项资金项目2042016kf0012;中国博士后科学基金项目2017M612510
2018-06-08(万方平台首次上网日期,不代表论文的发表时间)
共9页
257-264,248