期刊专题

10.6041/j.issn.1000-1298.2017.12.003

马铃薯典型病害图像自适应特征融合与快速识别

引用
针对自然条件下马铃薯典型病害区域定位和识别难的问题,提出了一种马铃薯典型病害图像的自适应特征融合与快速识别方法.该方法利用K-means、Hough变换与超像素算法定位叶片,结合二维Otsu与形态学法分割病斑区域,通过病斑图像颜色、形状、纹理的自适应主成分分析(PCA)特征加权融合,进行支持向量机(SVM)病害识别.对3类马铃薯典型病害图像进行识别试验,结果表明:SVM识别模型下,自适应特征融合方法相比PCA降维、特征排序选择等传统自适应方法,平均识别率至少提高了1.8个百分点;13个自适应融合特征下,识别方法平均识别率为95.2%,比人工神经网络、贝叶斯分类器提高了3.8个百分点和8.5个百分点,运行时间为0.600 s,比人工神经网络缩短3s,可有效保证识别精度,大大加快了识别速度.

马铃薯典型病害、Hough变换、主成分分析、加权融合、支持向量机

48

TP391.41(计算技术、计算机技术)

国家自然科学基金项目61661042;内蒙古自治区自然科学基金项目2015MS0617

2018-02-05(万方平台首次上网日期,不代表论文的发表时间)

共7页

26-32

暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

48

2017,48(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn