期刊专题

霉变板栗的近红外光谱和神经网络方法判别

引用
利用近红外光谱检测了带壳板栗的品质.在波数为12000~4000cm-1范围内采用近红外漫反射法采集了合格板栗和霉变板栗的光谱,用6种光谱预处理方法分析数据,比较了板栗近红外光谱在不同预处理方法下所建模型的识别率.试验结果表明经矢量归一化预处理所建模型识别效果最好,对预测集中的合格板栗、表面霉变板栗、内部霉变板栗的预测正确率分别为94.74%、94.44%、92.31%.

板栗、近红外光谱、BP神经网络、预处理、主成分提取

40

O57.33;S123(原子核物理学、高能物理学)

2009-12-04(万方平台首次上网日期,不代表论文的发表时间)

共4页

109-112

暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

40

2009,40(z1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn