期刊专题

图像分割在成熟茄子目标识别中的应用

引用
针对在自然光生长条件下采集的茄子图像,采用自动取阈的算法,分别利用图像的灰度信息、基于R、G、B分量线性变换的3个正交彩色特征量和基于HSV彩色空间对图像进行分割.经Matlab仿真对比结果得出:利用Otsu算法对灰度图进行分割,虽然对灰度直方图进行了优化,目标与背景的分割效果较好,但存在局部反光的影响;采用改进的Otsu算法,对彩色特征量(2G-R-B)/4进行分割,可以在一定程度上消除局部反光的影响;同样采用改进的Otsu算法对HSV彩色空间色调分量的分割,则可以克服目标茄子表皮的反光对分割结果的影响,取得了较好效果.以数学形态学降噪方法进一步对利用色调分割后的二值图像进行平滑处理,可大大改善分割效果.

茄子、图像分割、自动阈值、图像识别、Otsu

40

TP391.41(计算技术、计算机技术)

2009-12-04(万方平台首次上网日期,不代表论文的发表时间)

共5页

105-108,96

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

40

2009,40(z1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn