基于多元图像分析的包装罐内壁缺陷检测
为提高包装罐生产线内壁缺陷检测准确性与可靠性,研究了一种采用单摄像机的内壁缺陷检测系统.利用基于形态学的区域提取算法,从罐内图像中分割出内壁检测区域图像.提出基于多元图像分析(MIA)的内壁缺陷检测算法.利用图像融合构成环形合格样本图像,消除罐内焊缝区域的影响,把多个环形合格样本图像与测试样本内壁检测区域图像堆叠起来,用重合区域的图像构造多元测试图像.用基于主成分分析(PCA)的多元图像处理方法获得多元测试图像的主分量表示,将去掉第一主分量和噪声后的Q统计图像作为内壁缺陷特征的检测空间,利用阈值处理检测缺陷,解决了罐体内壁照明困难、亮度不均造成缺陷误检率高的问题,提高了检测系统的准确性和鲁棒性.实验表明对内壁缺陷检测的误检率降低到2%,验证了检测系统的有效性和可靠性.
包装罐、机器视觉、缺陷检测、区域提取、多元图像分析、Q统计量
40
TP391.41;TS292(计算技术、计算机技术)
教育部新世纪优秀人才支持计划资助项目NCET-04-0545
2009-07-22(万方平台首次上网日期,不代表论文的发表时间)
共5页
222-226