期刊专题

10.11975/j.issn.1002-6819.202207204

基于改进密度峰值聚类算法的梨花密度分级

引用
精准判断梨花疏密程度是自动疏花的基础.为了更好地判断梨花密度,该研究提出了基于改进密度峰值聚类算法的梨花密度分级方法.该方法首先提取梨花位置坐标,获取需要聚类的数据点.其次,为了实现梨花图像的密度分级,针对原有密度峰值聚类算法在梨花密度分级中的不足,结合梨花密度分级需求,改进了对聚类中心的选取方式,通过4组局部密度和中心偏移距离分割阈值将决策图划分为4部分来选取聚类中心,分别对应高、中、低密度以及无需疏花处理等4个等级,实现了对疏密合理的梨花图像的准确分级.最后,针对只有团状分布、稀疏分布及大尺度特写的梨花分布聚类分级不准确的问题,改进了两点间的距离dij参数的计算方法,统一梨花尺度大小和密度分级标准,对所有分布类型的梨花图像均能实现合理的密度分级.试验结果表明,该研究算法能够适应不同尺度大小的梨花图像,预测准确率为94.89%,密度分级准确率达到94.29%,可实现自然环境下局部花簇的密度分级,为机器智能疏花提供了技术支持.

图像识别、农业、聚类算法、密度分级、位置坐标、阈值、梨花

39

TP391(计算技术、计算机技术)

国家自然科学基金;河北省现代农业产业技术体系梨创新团队现代果园装备与智能化

2023-04-03(万方平台首次上网日期,不代表论文的发表时间)

共10页

126-135

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

39

2023,39(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn