10.11975/j.issn.1002-6819.2022.07.025
基于波段增强的DeepLabv3+多光谱影像葡萄种植区识别
精准获取葡萄种植区分布信息对其精细化管理和优质基地建设具有重要意义,通常大区域种植区识别主要基于遥感影像完成,但葡萄种植区空间位置的分散性和背景环境的复杂性,使得种植区识别的精度不高.该研究基于DeepLabv3+网络,改进网络输入通道数使其能够接受更多的光谱信息,同时构建波段信息增强模块(Band Information Enhancement,BIE),利用各波段特征图之间的相关性生成综合特征,提出了波段信息增强的葡萄种植区识别方法(BIE-DeepLabv3+).在2016和2019年高分二号影像葡萄种植区数据集上训练网络,在2020年影像上测试其性能,结果表明,改进模型输出结果的平均像素精度和平均交并比分别为98.58%和90.27%,识别效果好于机器学习SVM算法,在深度学习DeepLabv3+模型的基础上分别提高了0.38和2.01个百分点,比SegNet分别提高了0.71和4.65个百分点.BIE-DeepLabv3+模型拥有更大的感受野和捕获多尺度信息特征的同时放大了地物间的差异,能够解决影像中葡萄种植区存在类间纹理相似性、背景和环境复杂等问题,在减少模型参数的同时预测出的葡萄种植区更加完整,且边缘识别效果良好,为较大区域内背景复杂的遥感图像葡萄种植区识别提供了有效方法.
深度学习、语义分割、DeepLabv3+、多光谱影像、葡萄种植区
38
TP751;S127(遥感技术)
国家重点研发计划2020YFD1100601
2022-07-14(万方平台首次上网日期,不代表论文的发表时间)
共8页
229-236