期刊专题

10.11975/j.issn.1002-6819.2021.22.019

采用改进YoloV4模型检测复杂环境下马铃薯

引用
为解决马铃薯联合收获机在作业过程中分级清选的问题,并在收获作业过程中实时监测评估收获状态,该研究提出一种在光照亮度变化大、土壤与薯块遮挡、机器振动以及尘土干扰等情况下对马玲薯进行识别检测并快速准确获取马铃薯数量以及损伤情况的机器学习模型.在卷积神经残差网络中引入轻量级注意力机制,改进YoloV4检测网络,并将YoloV4结构中的CSP-Darknet53网络替换为MobilenetV3网络,完成特征提取.试验结果表明,基于卷积神经网络的深度学习方法相比于传统Open-CV识别提高了马铃薯识别精度,相比于其他传统机器学习模型,MobilenetV3-YoloV4识别速度更快,马铃薯识别的全类平均准确率达到91.4%,在嵌入式设备上的传输速度为23.01帧/s,模型鲁棒性强,能够在各种环境下完成对正常马铃薯和机械损伤马铃薯的目标检测,可为马铃薯联合收获机智能清选以及智能收获提供技术支撑.

机器视觉;目标检测;深度学习;马铃薯;YoloV4;MobilenetV3

37

S24(农业电气化与自动化)

云南省重大科技专项;重庆市科研机构绩效激励引导专项

2022-02-18(万方平台首次上网日期,不代表论文的发表时间)

共9页

170-178

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

37

2021,37(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn