期刊专题

10.11975/j.issn.1002-6819.2021.18.015

采用SEPLS_ELM模型估算夏玉米地上部生物量和叶面积指数

引用
利用高光谱数据进行作物生长状况监测具有无损和高效的特点,是现代精准农业发展的必要手段.该研究以连续3 a (2018-2020年)不同水氮供应下夏玉米营养生长期采集的212份植物样品(地上部生物量和叶面积指数)和高光谱实测数据为数据源,分别采用偏最小二乘回归(Partial Least Squares Regression,PLS)、极限学习机(Extreme Learning Machine,ELM)、随机森林(Random Forest,RF)和基于PLS叠加策略的叠加极限学习机算法(Stacked Ensemble Extreme Learning Machine based on the PLS,SEPLS_ELM)构建了夏玉米营养生长期地上部生物量和叶面积指数估算模型.结果 表明:基于PLS和ELM构建的夏玉米地上部生物量和叶面积指数估算模型的精度均较低,前者验证集R2低于0.85、均方根误差高于550 kg/hm2,后者R2低于0.90、均方根误差高于0.40 cm2/cm2.相比之下,基于RF和SEPLS_ELM构建的夏玉米营养生长期地上部生物量和叶面积指数估算模型均有着较高的估算精度,SEPLS_ELM模型表现尤为突出,其地上部生物量和叶面积指数估算模型验证集的R2分别为0.955和0.969,均方根误差分别为307.3 kg/hm2和0.24 cm2/cm2,表明叠加集成模型能够充分利用高光谱数据并提高作物地上部生物量和叶面积指数估算精度.

高光谱;遥感;生物量;随机森林;叶面积指数;偏最小二乘;极限学习机;叠加集成模型

37

S365;S127(田间管理)

公益性行业农业科研专项201503124

2021-12-16(万方平台首次上网日期,不代表论文的发表时间)

共8页

128-135

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

37

2021,37(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn