期刊专题

10.11975/j.issn.1002-6819.2021.16.016

基于改进YOLOv3的果园复杂环境下苹果果实识别

引用
为使采摘机器人能够全天候在不同光照、重叠遮挡、大视场等果园复杂环境下对不同成熟度的果实进行快速、准确识别,该研究提出了一种基于改进YOLOv3的果实识别方法.首先,将DarkNet53网络中的残差模块与CSPNet(Cross Stage Paritial Network)结合,在保持检测精度的同时降低网络的计算量;其次,在原始YOLOv3模型的检测网络中加入SPP(Spatial Pyramid Pooling)模块,将果实的全局和局部特征进行融合,提高对极小果实目标的召回率;同时,采用Soft NMS(Soft Non-Maximum Suppression)算法代替传统NMS(Non-Maximum Suppression)算法,增强对重叠遮挡果实的识别能力;最后,采用基于Focal Loss和CIoU Loss的联合损失函数对模型进行优化,提高识别精度.以苹果为例进行的试验结果表明:经过数据集训练之后的改进模型,在测试集下的MAP(Mean Average Precision)值达到96.3%,较原模型提高了3.8个百分点;F1值达到91.8%,较原模型提高了3.8个百分点;在GPU下的平均检测速度达到27.8帧/s,较原模型提高了5.6帧/s.与Faster RCNN、RetinaNet等几种目前先进的检测方法进行比较并在不同数目、不同光照情况下的对比试验结果表明,该方法具有优异的检测精度及良好的鲁棒性和实时性,对解决复杂环境下果实的精准识别问题具有重要参考价值.

收获机;目标检测;图像处理;果实识别;YOLOv3;复杂环境

37

TP391.4(计算技术、计算机技术)

天津市科技支撑计划项目19YFZCSN00360

2021-11-26(万方平台首次上网日期,不代表论文的发表时间)

共9页

127-135

暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

37

2021,37(16)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn