期刊专题

10.11975/j.issn.1002-6819.2021.09.007

农业车辆双目视觉障碍物感知系统设计与试验

引用
为保证智能化农业机械在自主导航过程中的安全可靠性,该研究将嵌入式AI计算机Jetson TX2作为运算核心,设计一套基于双目视觉的农业机械障碍物感知系统.使用深度卷积神经网络对作业环境中的障碍物进行识别,并提出一种基于改进YOLOv3的深度估计方法.将双目相机抓取的左右图像分别输入至改进的YOLOv3模型中进行障碍物检测,并将输出的目标检测框信息进行目标匹配和视差计算,完成对障碍物的识别、定位和深度估计.试验结果表明,该系统能够对障碍物进行准确识别,平均准确率和召回率分别达到89.54%和90.18%;改进YOLOv3模型的深度估计误差均值、误差比均值较原始YOLOv3模型分别降低25.69%、25.65%,比Hog+SVM方法分别降低41.9%、41.73%;动态场景下系统对障碍物深度估计的平均误差比为4.66%,平均耗时0.573 s,系统在深度预警时能够及时开启电控液压转向模块进行安全避障.研究结果可为农业机械的自主导航提供有效的环境感知依据.

农业机械;图像处理;障碍物感知;深度估计;视差计算

37

S24(农业电气化与自动化)

国家自然科学基金项目41774027,41904022

2021-08-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

55-63

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

37

2021,37(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn