10.11975/j.issn.1002-6819.2020.20.016
用多阈值多目标无人机图像分割优化算法检测秸秆覆盖率
为了适应航拍采集秸秆覆盖图像大尺度处理需求,提高当前多阈值差分灰狼优化算法(Differential Evolution Grey Wolf Optimizer,DE-GWO)的图像分割质量和速度,提出一种用于检测秸秆覆盖率的图像分割优化算法.该研究借鉴了人工蜂群多目标灰狼优化算法(Artificial Bee Colony Survey Multi-Objective Grey Wolf Optimizer,AS-MOGWO),在DE-GWO算法中加入了多目标灰狼优化算法(Multi-Objective Grey Wolf Optimizer,MOGWO)的外部存档,引入多目标的概念,并添加了人工蜂群算法(Artificial Bee Colony,ABC)中观察蜂的搜索策略,提出了基于多阈值的多目标秸秆覆盖图像自动分割的优化算法(Differential Evolution Artificial Bee Colony Survey Multi-Objective Grey Wolf Optimization,DE-AS-MOGWO).该算法不仅继承了DE-GWO算法的自动分割特性,还兼备AS-MOGWO算法的高效收敛性,提高了图像分割的准确性和处理速度.分析结果显示,在无外界影响的情况下,该研究提出的DE-AS-MOGWO优化算法与人工实际测量法匹配的误差可控制在8%以内.在算法性能方面,DE-AS-MOGWO相比于PSO(Particle Swarm Optimization)、GWO(Grey Wolf Optimizer)、DE-GWO和DE-MOGWO在平均匹配率上分别提高了4.967、3.617、2.188和3.404个百分点,平均误分率分别降低了0.168、0.131、0.089和0.116个百分点,而算法耗时分别降低了82%、84%、17%和32%.试验结果表明,多阈值多目标图像分割方法在大尺度无人机图像中可获得较好的分割效果,且针对不同秸秆覆盖率图像均具有普遍适用性,为大面积秸秆覆盖率检测以及其他相关图像检测提供了高效算法支持.
秸秆、算法、灰狼优化算法、多阈值、多目标、观察策略、秸秆覆盖率
36
S24;TP751(农业电气化与自动化)
国家自然科学基金;吉林省科技厅重点科技项目;吉林省发改委创新资金项目
2020-12-29(万方平台首次上网日期,不代表论文的发表时间)
共10页
134-143