10.11975/j.issn.1002-6819.2020.17.021
基于机器视觉的育肥猪分群系统设计与试验
为控制育肥猪出栏时的体质量差异,该研究开发了一套基于机器视觉技术的育肥猪分群系统,该系统通过机器视觉技术和卷积神经网络模型代替传统地磅对猪只体质量进行估测,可有效避免粪污对设备精度的影响及腐蚀;以前一天全部猪只体质量数据从小到大排列的第30%个数据作为当日的分群基准质量,将大于等于基准质量的视为长势较快的猪只,小于基准质量的视为长势较慢的猪只,每次采食按照猪只长势快慢分为2群进行饲喂;该系统依托于LabVIEW软件开发平台和物联网系统构建,平均每头猪只通过系统时间为6.2 s.为验证该系统的实际应用效果开展了为期30 d的现场试验,将饲喂于装有分群系统猪栏中的120头长白育肥猪作为试验组,由分群系统按猪只长势快慢分群饲喂;将饲喂于传统猪栏中的120头长白育肥猪作为对照组,按照传统人工调栏的方式进行饲喂.试验开始时试验组和对照组猪只平均体质量分别为32.21、31.76 kg,标准差分为别2.61和2.49 kg;结束时试验组和对照组猪只平均体质量分别为57.68、57.41 kg,标准差分为别5.26和5.51 kg,总料肉比分别为2.31和2.34,期间试验组猪只体质量的标准差小于对照组,但是2组猪只平均体质量、标准差、总料肉比均不存在显著差异,表明采用该系统对猪只进行分群饲喂控制猪只体质量差异效果等同于人工调栏,同时可以节省人力成本,缓解农业劳动力短缺的压力.该研究也可为母猪饲喂站、种猪测定站等智能化养猪设备的研发提供参考.
机器视觉、动物、育肥猪、LabVIEW、分群系统
36
S818(普通畜牧学)
国家重点研发计划2016YFD0700204
2020-10-29(万方平台首次上网日期,不代表论文的发表时间)
共8页
174-181