10.11975/j.issn.1002-6819.2020.13.016
红枣收获机视觉导航路径检测
针对新疆地区骏枣与灰枣枣园的收获作业,该研究提出一种红枣收获机枣树行视觉导航路径检测算法.通过枣园图像固定区域中B分量垂直累计直方图的标准差d与最小值f的关系对枣园种类进行自动判断.针对灰枣枣园,首先采用色差法与OTSU法对图像进行灰度化与二值化处理,然后进行面积去噪与补洞处理,在处理区域内从上向下逐行扫描,将每行像素上像素值为0的像素点坐标平均值作为该行候补点的坐标,并将所有候补点坐标的平均值作为Hough变换的已知点坐标,最后基于过已知点的Hough变换拟合导航路径;针对骏枣枣园,在处理区域内通过垂直累计R分量的方法确定扫描区间,然后在扫描区间内从上到下逐行扫描,将每行像素上R分量值最小的像素点作为该行的候补点,并将所有候补点的坐标平均值作为Hough变换的已知点,最后使用过已知点的Hough变换拟合导航路径.试验结果表明:对于灰枣枣园与骏枣枣园,该算法的路径检测准确率平均值分别为94%和93%,处理1帧图像平均耗时分别为0.042和0.046 s,检测准确性与实时性满足红枣收获机作业要求,能够自动判别枣园种类进行作业,可为实现红枣收获机自动驾驶提供理论依据.
农业机械、图像处理、视觉导航、枣园、Hough变换
36
TP242.6(自动化技术及设备)
国家重点研发计划课题;兵团中青年科技创新领军人才
2020-08-17(万方平台首次上网日期,不代表论文的发表时间)
共8页
133-140