10.11975/j.issn.1002-6819.2020.11.012
基于广义回归神经网络的灌溉系统首部多用户配水快速PID控制
针对多用户配水状态下灌区流量、压力需求变化范围大,传统流量、压力控制响应速度慢等问题,建立适用于多用户灌区配水的灌溉系统首部控制技术.该研究通过分析供水系统流量、压力调节方式,提出了流量、压力PID(Proportion Integration Differentiation)耦合调节方法,建立以电动阀开度为流量控制量、变频器频率为压力控制量对流量和压力进行调控的灌溉首部控制系统.为了减少系统的调节时间,提高系统的运行效率,采用广义回归神经网络(Generalized Regression Neural Network,GRNN)建立流量、压力和电动阀控制模拟量、变频器控制模拟量间的预测模型,形成神经网络PID控制模型(GRNN_PID),并进行模型精度和控制精度验证.GRNN训练结果显示,变频器控制模拟量的相对误差为0.11%~3.86%,电动阀控制模拟量相对误差为0.09%~5.74%,模型精度较高.使用3个调节过程模拟3个用户的需水行为对模型进行验证,结果表明,GRNN_PID模型3个过程的调节时间分别为11.6、10.7和7.2 s,PID模型3个过程的调节时间分别为31.7、29.6和16.9 s,GRNN_PID模型大幅减少了系统的调节时间,提高了系统的运行效率;分别计算了2种模型的控制精度,GRNN_PID调节方法和传统PID调节方法的稳态流量和压力误差都在1%以内,最大超调量为8%,控制精度较高但相差不大,表明GRNN是从策略上加速系统调节速度,其本身并没有对PID的参数进行调整,因此对系统的控制精度影响不大.研究可为灌溉系统流量压力快速控制提供参考.
流量、压力、神经网络、控制、耦合、PID调节
36
TP272(自动化技术及设备)
"十三五"国家重点研发计划项目;国家科技支撑计划项目
2020-07-23(万方平台首次上网日期,不代表论文的发表时间)
共7页
103-109