期刊专题

10.11975/j.issn.1002-6819.2020.07.015

利用SAR影像与多光谱数据反演广域土壤湿度

引用
针对基于主动微波遥感途径开展广域土壤湿度反演的过程中,对植被和土壤粗糙度影响难以进行有效估算的问题,该研究联合多极化雷达和原始多光谱数据源,提出一种改进的卷积神经网络(Improved Convolutional Neural Network,ICNN)方法.该方法采用不同尺寸的卷积核对原始变量进行一维卷积运算,自适应提取能反映测区土壤湿度时空差异的高级特征维;同时,去除了传统卷积神经网络结构中的池化层,保证提取的特征信息完整.试验结果表明,在边长超过100 km的四川盆地研究区域内,模型预测值与样本数据相关系数达到0.934,预测值偏差服从均值趋近于0的正态分布,均方根误差为1.45%,误差分布范围小于6.3%,结果具有较高的可靠性.该方法可为精准农业、旱涝灾害等领域的广域监测研究提供一定的支撑.

多光谱、土壤湿度、模型、多极化SAR、Sentinel-1A/2A、改进的卷积神经网络

36

P237(摄影测量学与测绘遥感)

国家重点研发计划"地球观测与导航"领域重点专项项目;国家自然科学基金面上项目;国家自然科学基金青年基金项目;中国铁路总公司科技研究开发计划重点课题;四川省科技计划项目

2020-05-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

134-140

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

36

2020,36(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn