期刊专题

10.11975/j.issn.1002-6819.2020.04.032

采用机器视觉与自适应卷积神经网络检测花生仁品质

引用
该文以花生质量自动化检测为研究目标,提出了一种基于机器视觉与自适应卷积神经网络的花生质量检测方法.构建花生图像数据库用于识别花生的常见缺陷,包括霉变、破碎、干瘪等;然后建立卷积神经网络自动提取花生图像特征.为避免深层网络训练时间过长,分别将二次函数与正态分布模型引入网络损失中,同时从网络的损失与权值2方面提出自适应学习率,并分别结合梯度下降与梯度上升法更新网络.为提高模型的泛化能力,引进迁移学习算法,分别在网络的特征层与分类层后加入领域自适应,实现跨领域与跨任务的检测.试验结果表明,该方法对花生常见缺陷的平均识别率达99.7%,与传统的深度网络相比实现了更高的收敛速度与识别精度.

农产品、机器视觉、无损检测、自适应卷积神经网络、自适应学习率、迁移学习、领域自适应

36

TP391.41;TP274+.3(计算技术、计算机技术)

国家自然科学基金资助项目51775243;江苏省重点研发计划?产业前瞻与共性关键技术BE2017002

2020-04-15(万方平台首次上网日期,不代表论文的发表时间)

共9页

269-277

暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

36

2020,36(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn