10.11975/j.issn.1002-6819.2018.11.020
空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草
针对传统Alex Net模型参数大、特征尺度单一的问题,该文提出一种空洞卷积与全局池化相结合的多尺度特征融合卷积神经网络识别模型.通过对初始卷积层的卷积核进行膨胀,以增大其感受野而不改变参数计算量,并采用全局池化代替传统的全连接层来减少模型的参数.通过设置不同膨胀系数的初始卷积层卷积核与全局池化层类型,以及设置不同Batch Size,得到8种改进模型,用于训练识别共12种农作物幼苗与杂草,并从建立的模型中选出最优模型.改进后的最优模型与传统Alex Net模型相比,仅经过4次训练迭代,就能达到90%以上的识别准确率,平均测试识别准确率达到98.80%,分类成功指数达到96.84%,模型内存需求减少为4.20 MB.实际田间预测野芥与雀麦幼苗的准确率都能达到75%左右,说明该文最优模型对正常情况下的幼苗识别性能较好,但对复杂黑暗背景下的甜菜幼苗准确率为60%,对恶劣背景下的识别性能还有待提升.由于模型使用了更宽的网络结构,增加了特征图的多尺度融合,保持对输入空间变换的不变性,故对正常情况下不同作物幼苗与杂草的识别能力较强.该文改进模型能达到较高的平均识别准确率及分类成功率,可为后续深入探索复杂田间背景下的杂草识别以及杂草与幼苗识别装置的研制打下基础.
图像识别、农作物、幼苗、杂草、空洞卷积、全局池化、多尺度特征融合、卷积神经网络
34
S126(农业物理学)
国家自然科学基金资助项目31471413;江苏高校优势学科建设工程资助项目PAPD苏政办发20116号;江苏省六大人才高峰资助项目ZBZZ-019
2018-07-11(万方平台首次上网日期,不代表论文的发表时间)
共7页
159-165