期刊专题

10.11975/j.issn.1002-6819.2016.21.026

分散矩阵特征选择方法改进及在高光谱影像植被分类中的应用

引用
基于传统分散矩阵的特征选择方法易选出具有一定区分性但相互冗余的特征,这些冗余的特征制约了高光谱影像分类正确率的提高,针对此问题,该文对传统方法进行了改进,首先计算每2个类别的基于分散矩阵的可分性值,然后将它们的平均值作为特征选择准则,最后利用序列浮点向前搜索算法选出特定数量的特征,用于后续分类。将所选特征的均方相关系数作为冗余性度量,定量化衡量了所提出方法克服选择冗余特征的能力。利用一景常用的AVIRIS高光谱植被影像,从分类正确率的角度,比较了所提出方法与几种典型的基于互信息和基于可分性准则的特征选择方法,在高光谱影像植被分类中的性能。试验结果表明改进的特征选择方法能较好的避免选择相互冗余的特征,与基于互信息的特征选择方法相比,基于分散矩阵可分性准则的特征选择方法在总体上能获得较高的分类正确率,特别是所提出的特征选择方法,在2个数据集上均获得了最高的总体分类精度87.2%和90.1%,从而阐明了所提出的方法在高光谱影像植被分类中的有效性。

植被、分类、光谱分析、高光谱影像、波段选择、基于分散矩阵的可分性准则、互信息

32

S127(农业物理学)

湖北省建筑质量检测装备工程技术研究中心基金项目CQTE201603;国家自然科学基金41371349

2016-11-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

196-201

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

32

2016,32(21)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn