10.11975/j.issn.1002-6819.2016.16.021
苹果采摘机器人视觉系统的暗通道先验去雾方法
针对雾霾严重气候条件下苹果采摘机器人视觉定位困难的问题,提出一种把暗通道先验(dark channel prior,DCP)原理应用于苹果图像去雾的调参和改进方法。给出了一种获取大气光系数 A 的方法,首先把计算得到的暗通道图结果存入矩阵,求暗通道图中的前1/1000个最大元素所在位置,并存储在与暗通道矩阵相同大小的新矩阵中;根据新矩阵中的位置信息获得 R 通道矩阵相应位置的值,最后求取这些值的平均值作为 A 的取值。根据工程需要,该研究取去雾强度ω恒为1。通过与多尺度 Retinex(multiscale retinex,MSR)方法、自适应直方图均衡化(adaptive histogram equalization, AHE)等常规方法以及其他文献的暗通道去雾使用方法进行对比试验,结论是该文的方法能获得更好的主观视觉效果。在结果图像的对比度方面,该研究使用的方法能得到平均对比度64.04,与计算速度较快的直方图均衡化方法的35.46相比,提升了81%;R 通道对比度为68.525,与直方图均衡化方法得到的 R 通道对比度36.425相比提升了88%;该方法得到的图像直方图整体上呈现中间高两边低的形状特点,表明相对其他去雾方法,该文的方法能得到较好的去雾图像质量。时间复杂度方面,改进后的 DCP 方法计算640×480的图像耗时在33~37 ms 之间,基本能满足实时要求。分割定位精确度方面,该文方法的综合定位精度为94.8%,高于其他方法。试验证明使用该文方法能在去雾的效率和性能方面得到较好的平衡,是一种可以用于实际采摘作业的可行方法。
机器人、收获、定位、苹果采摘、机器视觉、暗通道先验、去雾
32
TP391(计算技术、计算机技术)
国家高技术研究发展计划2012AA10A501-5;重庆青年人才计划 cstc2013kjrc-qnrc40001;重庆市前沿与应用基础研究计划cstc2013jcyjA80013;重庆市教委科技计划KJ1500321
2016-08-11(万方平台首次上网日期,不代表论文的发表时间)
共8页
151-158