期刊专题

10.11975/j.issn.1002-6819.2016.03.029

基于集合经验模态分解和人工蜂群算法的工厂化养殖pH值预测

引用
针对单一预测模型预测养殖pH值精度低等问题,提出集合经验模态分解(ensemble empirical mode decomposition, EEMD)和改进人工蜂群算法(improve artificial bee colony,IABC)相结合的南美白对虾工厂化养殖pH值组合预测模型。在建模过程中,利用EEMD算法对原始pH值时间序列进行多尺度分解,得到一组平稳、互不耦合的子序列;根据各子序列变化特征选择适宜的单项预测方法并建模,通过改进人工蜂群(IABC)算法优化复杂非线性组合预测模型目标函数权重系数,构建了工厂化养殖pH值非线性组合预测模型。利用该模型对广东省湛江市2014年9月8日-2014年9月15日期间工厂化养殖pH值进行预测,结果表明,该预测模型取得了较好的预测效果,与模拟退火优化BP神经网络(simulated Annealing-BP neural network,SA-BPNN)和遗传算法优化最小二乘支持向量回归机(genetic algorithm-least square support vector regression,GA-LSSVR)对比分析,模型评价指标平均绝对百分比误差MAPE、均方根误差、平均绝对误差MAE和相关系数R2分别为0.0035、0.0274、0.0224和0.9923,均表明该文提出的组合预测模型具有更高预测精度,能够满足实际南美白对虾工厂化养殖pH值精细化管理需要,也为其他领域pH值预测提供参考。

算法、pH值、水产养殖、组合预测、集合经验模态分解、人工蜂群算法、南美白对虾

TP391(计算技术、计算机技术)

国家自然科学基金项目61471133,61473331;国家科技支撑计划项目2012BAD35B07;广东省科技计划项目2013B090500127,2013B021600014,2015A070709015,2015A020209171;广东海洋大学创新强校工程项目GDOU2014050227

2016-04-01(万方平台首次上网日期,不代表论文的发表时间)

共8页

202-209

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

2016,(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn