10.11975/j.issn.1002-6819.2016.03.012
基于PEST的土壤-作物系统模型参数优化及灵敏度分析
农业生产管理系统模型输入参数多,参数率定过程十分耗时费力,大大限制了其推广应用。该研究以华北平原2 a的冬小麦-夏玉米田间试验观测数据为基础,使用PEST(parameter estimation)参数自动优化工具对土壤-作物-大气系统水热碳氮过程藕合模型(soil water heat carbon and nitrogen simulator,WHCNS)的土壤水力学参数、氮素转化参数和作物遗传参数进行自动寻优,同时计算分析模型参数的相对综合敏感度,并将优化结果与土壤实测水力学参数和试错法的模拟结果进行比较。参数敏感度分析结果表明,18个模型参数的相对综合敏感度较高,其中土壤水力学参数普遍具有较高的敏感度,以饱和含水率敏感度最高;作物参数中,作物生长发育总积温和最大比叶面积具有较高的综合敏感度;而氮素转化参数的敏感度远低于土壤水力学参数和作物参数。评价模型模拟效果的统计性指标(均方根误差、模型效率系数和一致性指数)表明,PEST法比实测水力学参数的模拟精度有所提高,其中土壤含水率、土壤硝态氮含量、作物产量和叶面积指数的均方根误差分别降低了61.8%、23.5%、73.6%和23.3%。同时PEST法比试错法对土壤水分和作物产量的模拟精度也有较大提高,但对土壤氮素和叶面积指数的模拟精度提高不明显。由于该方法大大节约了模型校准时间,在较短的时间内获得了明显高于试错法的模拟精度,因此PEST软件在WHCNS模型参数自动优化中是一个值得推广的工具。
灵敏度分析、作物、模型、PEST、参数优化、氮循环、WHCNS
S152(土壤学)
国家自然科学基金项目41171184、51139006;长江学者和创新团队发展计划项目IRT0412
2016-04-01(万方平台首次上网日期,不代表论文的发表时间)
共8页
78-85