10.11975/j.issn.1002-6819.2015.24.022
光谱信息与作物生长模型数据同化中的时间尺度优化
光谱信息与作物生长模型同化的效率提升是同化方法区域应用研究的一个重要方面。该文通过设置不同步长的光谱观测值同化时相,开展针对光谱信息与作物生长模型WOFOST(world food studies)同化的时间尺度优化研究,以提高同化效率。基于长春地区水稻生长周期,该文设置了4个等距时间尺度(步长分别为5,10,20和30 d)和一个关键时相时间尺度(同化时相对应水稻生长关键时期),在不同时间尺度下利用光谱信息计算的修正叶绿素吸收比值指数MCARI1(modified chlorophyll absorption ratio index)同化WOFOST模型,通过比较不同时间尺度下的同化精度和效率,优化同化时间尺度。结果表明:随着同化时间尺度增大,同化效率逐渐提高,而同化精度逐渐降低。在平衡精度和效率的前提下,选择步长介于10~20 d的时间尺度或关键时相尺度作为光谱信息与作物生长模型的同化时间尺度是合理的。该文提出的优化同化时间尺度方法为提高光谱信息与作物生长模型同化的区域应用效果提供了参考。
作物、遥感、模型、优化、光谱指数、生长、同化、时间尺度
TP79;S127(遥感技术)
国家自然科学基金重点项目41230747;国家自然科学基金面上项目41371407
2016-01-18(万方平台首次上网日期,不代表论文的发表时间)
共7页
142-148