10.3969/j.issn.1002-6819.2015.07.025
基于点云图的农业导航中障碍物检测方法
为满足智能农业机器人路径规划中障碍物检测的需求,针对传统双目视觉中用于障碍物检测算法的局限性,提出基于点云图的障碍物距离与尺寸的检测方法。该方法以双目视觉中以立体匹配得到的点云图为对象,通过设置有效空间,对不同区域处点云密度的统计,找到点云密度随距离的衰减曲线。远距离障碍物由于相机分辨率的不足,点云密度会随距离下降,通过密度补偿算法进行补偿,经二次设置有效空间后锁定障碍物位置,将目标点云分别投影于俯视栅格图和正视图中,获得其距离和尺寸信息。试验表明:该方法能有效还原障碍物信息,最大测距范围为28 m,平均误差为2.43%;最大尺寸检测范围为10 m,长度和高度平均误差均小于3%。该文基于点云图的栅格化表示和密度补偿算法,通过设置有效空间将点云投影得到障碍物距离和尺寸,不同环境下的精度测试和距离检测验证了可靠性和鲁棒性。
机器人、算法、机器视觉、障碍物检测、点云图、点云密度
TP242.6(自动化技术及设备)
江苏省自然科学基金BK20140720;中央高校基本科研业务费专项资金KYZ201325
2015-04-27(万方平台首次上网日期,不代表论文的发表时间)
共7页
173-179