期刊专题

10.3969/j.issn.1002-6819.2014.08.008

基于径向基神经网络-遗传算法的海流能水轮机叶片翼型优化

引用
如何提高海流能水轮机的能量捕获效率是海洋能开发领域的重点研究课题,而提高海流能水轮机能量性能的关键在于其叶片几何的构造基础--水力翼型的性能提升。该文提出了一种水力翼型的多工况优化设计方法,该方法采用Bezier曲线参数化技术建立翼型的参数化表征方法,然后利用拉丁超立方试验设计技术在设计空间获取训练径向基(radial basis function,RBF)神经网络的样本点,通过计算流体动力学的方法获得每个翼型样本的性能参数后开展神经网络的学习训练,最后采用RBF神经网络与NSGA-II遗传算法相结合的现代优化技术数值求解水力翼型的多工况优化问题。基于上述优化方法对NACA63-815翼型进行了优化改进,重点研究了该翼型在3个攻角工况下(0,6°和12°)的优化问题及求解方法。优化结果表明,优化后的翼型在3个工况点下都具有更好的升阻比性能,同时也能更好地抑制失速现象的产生,验证了该优化方法的理论正确性和可行性。

神经网络、水轮机、遗传算法、优化、叶片翼型、多工况优化

TK733+.3(水能、水力机械)

国家自然科学基金重点项目51339005;国家自然科学基金项目51379174

2014-05-06(万方平台首次上网日期,不代表论文的发表时间)

共9页

65-73

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

2014,(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn