期刊专题

10.3969/j.issn.1002-6819.2014.06.015

用高光谱成像技术检测柑橘红蜘蛛为害叶片的色素含量

引用
为解决传统理化法检测柑橘树叶片受红蜘蛛为害后色素含量变化时存在的工作量大、效率低等问题,该文研究应用高光谱成像技术检测柑橘红蜘蛛为害叶片色素含量的方法。研究中对比了正常叶片与受害叶片的原始光谱以及原始光谱一阶微分曲线的差异,寻找反映叶片色素含量变化的特征波段;分析了特征波段反射率比值与叶片色素间相关性;采用单变量线性回归法分析了常用植被指数预测叶片色素含量的效果;采用逐步回归分析法建立了叶片色素含量预测模型,并对模型预测效果进行了F检验。结果表明:常用植被指数预测叶片色素含量结果不理想;选取的667/522、667/647和522/647 nm等3个特征波段反射率比值与叶片3种色素含量间具有较高的相关性;用于建立叶片色素含量预测模型的最佳特征波段反射率比值为667/522和667/647 nm,所建立的模型可较好地预测健康及受害叶片的叶绿素a、叶绿素b和类胡萝卜素含量。

光谱检测、预测、模型、叶绿素、高光谱成像、特征波段、柑橘、红蜘蛛

S229(农业机械及农具)

国家自然科学基金31101077;广东省科技计划2011B020308009;现代农业产业技术体系建设专项资金CARS-27

2014-03-29(万方平台首次上网日期,不代表论文的发表时间)

共7页

124-130

暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

2014,(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn