10.3969/j.issn.1002-6819.2014.04.019
基于核函数极限学习机的分布式光伏短期功率预测
伴随中国农村电网的较快发展,分布式光伏的集成应用是实现新能源就地消纳的重要途径。国家相关政策已对分布式光伏的快速发展进行了相关规划,国家电网公司也出台政策为分布式光伏接入提供便利条件与技术支持,相关的分布式光伏发电功率预测技术需要进行深入研究。针对用户侧分布式光伏发电系统,考虑预测系统的成本约束和运行需求,以及农村电网应用特点,提出一种基于核函数极限学习机的分布式光伏功率预测方法。对于不同容量的分布式光伏发电系统,使用核函数极限学习机构建分布式光伏短期功率预测模型,使用基于权重的训练样本筛选方法提高预测模型计算效率,并通过粒子群算法优化模型参数。预测模型使用低成本的非数值天气预报采样信息,对几十千瓦级的分布式光伏,预测相对误差仅16%~18%,能在低功耗处理器上实现10ms内完成单次发电功率预测,在简化低权重属性后能基本保持原有精度,同时在分布式光伏随机覆尘或逆变器故障条件下预测误差基本不变,具有较高的适应能力。
分布式发电、光伏发电、预测、短期功率、用户侧、极限学习机、光伏覆尘
TM615(发电、发电厂)
国家自然科学基金资助项目51277067资助。
2014-02-22(万方平台首次上网日期,不代表论文的发表时间)
共8页
152-159